|
|
Arduino Nano R3 |
x 1 | |
|
|
I2C 16x2 Arduino LCD Display Module |
x 1 | |
|
|
Buzzer |
x 1 | |
|
|
PUSHBUTTON |
x 2 | |
|
|
LED |
x 10 | |
|
|
Resistor, 470 ohm |
x 10 | |
|
|
Resistor 10k ohm |
x 2 |
|
arduino IDEArduino
|
|
|
Soldering Iron Kit |
DIY addictive Arduino 1D Pong game
Pong is a table tennis–themed 2 dimensional graphics arcade video game manufactured by Atari and originally released on 1972. 
This time I will present you a simple way to make a 1D LED Pong game which is an interesting project that simulates a Pong game on a single-dimensional array of LEDs. This can be done using Arduino microcontroller board. The movement of the ball is simulated by the array of LEDs, and the paddles are the two buttons. The game is for 2 players, in which the "ball" travels down the length of the LED array, and will bounce back if the button is pressed when yellow LED is illuminated.
The result is displayed on the LCD screen. The movement of the ball, the winning of a point as well as the victory are accompanied by appropriate sounds
The device is very simple to make and consists of several components:
- Arduino Nano microcontroller board
- 16x2 LCD Display
- 10 Leds
- 12 resistors
- two buttons
- and Buzzer

The game starts by moving the ball from player 1 to player 2, and if player 2 fails to press the button while the yellow LED is on, the red LED will light up and it's a point for player 1. Each game is started by the winner of the previous one. The speed of the ball is increases after every hit, making it more difficult to hit the ball in time. The match ends when one of the players wins 10 games, and at that moment the Leds that are on the winner's side will flash.

- The starting speed of movement of the LEDs is set in the row:
const unsigned long initialMillisecondsPerLED = 400;
The lower this number, the faster the movement speed

- The degree of acceleration after each hit is adjusted in the rows:
if (deltaMillisecondsPerLED > 50)
{
deltaMillisecondsPerLED -= 50;
and the higher this number is, the higher the acceleration.

The game can be played by one or two players. In the case of two players, which is a natural option, it is preferable to use robust external arcade buttons.

For this purpose I used these buttons that I made for the needs of one of my previous projects. They are large, and have a precise, and audible click.
Finally a short conclusion. This is an interesting one-dimensional compact version of the classic "Pong" game made with a minimal number of components, yet extremely addictive, and can be played for hours before you get bored. The device is mounted in a suitable box made of PVC board and lined with self-adhesive wallpaper. For power, it is preferable to use a lithium battery for the sake of mobility

//#include <LiquidCrystal.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2);
bool willTheBallGoTowardsPlayerTwo = true;
bool isInputAllowed = true;
const int playerOne = 12;
const int goalPlayerOne = 13;
const int buttonPlayerOne = 3;
const int playerTwo = 5;
const int goalPlayerTwo = 4;
const int buttonPlayerTwo = 2;
int scoreOfPlayerOne = 0;
int scoreOfPlayerTwo = 0;
const unsigned long initialMillisecondsPerLED = 400;
const unsigned long initialDeltaMillisecondsPerLED = 50;
unsigned long millisecondsPerLED = initialMillisecondsPerLED;
unsigned long deltaMillisecondsPerLED = initialDeltaMillisecondsPerLED;
unsigned long currentMillis = 0;
unsigned long previousMillis = 0;
int currentPosition = playerOne; //Player one starts the game.
int previousPosition = playerOne + 1;
int deltaPosition = 0;
int buttonStatePlayerOne = 0;
int lastButtonStatePlayerOne = 0;
int buttonStatePlayerTwo = 0;
int lastButtonStatePlayerTwo = 0;
void setup() {
lcd.backlight();
lcd.begin(16,2);
lcd.clear();
lcd.setCursor(2, 0);
lcd.print("1D-Pong Game");
lcd.setCursor(3, 1);
lcd.print("by mircemk");
delay(2000.);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Player One: 0");
lcd.setCursor(0, 1);
lcd.print("Player Two: 0");
pinMode(4, 1);
pinMode(5, 1);
pinMode(6, 1);
pinMode(7, 1);
pinMode(8, 1);
pinMode(9, 1);
pinMode(10, 1);
pinMode(11, 1);
pinMode(12, 1);
pinMode(13, 1);
/*Connect pins 4 to 13 to 220ohm resistors, connect the LEDs' longer legs(+) to the resistors,
connect the other legs(-) of the LEDs' to ground.
I recommend red LEDs for 4 and 13(Goals), yellow LEDs for 5 and 12(Players), green LEDs for other pins(Field).
*/
pinMode(2, 0); //Pushbuttons for players. Pin 2 is for player two. Pin 3 is for player one.
pinMode(3, 0); //Connect pushbuttons following the instructions on this page: https://www.arduino.cc/en/Tutorial/DigitalReadSerial
}
void loop()
{
ListenForInput();
currentMillis = millis();
if (currentMillis - previousMillis >= millisecondsPerLED) //If you don't understand this, see: https://www.arduino.cc/en/Tutorial/BlinkWithoutDelay
{
CheckGoalConditions();
lcd.clear();
lcd.setCursor(0, 0); //(Column,Row)
lcd.print("Player One: ");
lcd.setCursor(12, 0);
lcd.print(scoreOfPlayerOne);
lcd.setCursor(0, 1); //(Column,Row)
lcd.print("Player Two: ");
lcd.setCursor(12, 1);
lcd.print(scoreOfPlayerTwo);
CheckEndGame();
DetermineNextPosition();
MoveBallToNextPosition();
previousMillis = currentMillis;
}
}
void ListenForInput() //If you don't understand this method. See: https://www.arduino.cc/en/Tutorial/StateChangeDetection
{
buttonStatePlayerOne = digitalRead(buttonPlayerOne);
buttonStatePlayerTwo = digitalRead(buttonPlayerTwo);
if (buttonStatePlayerOne != lastButtonStatePlayerOne && isInputAllowed)
{
if (buttonStatePlayerOne == 1)
{
if (currentPosition == playerOne)
{
ToggleBallDirection();
IncreaseSpeed();
}
else
{
ScoreForPlayer(2);
}
}
lastButtonStatePlayerOne = buttonStatePlayerOne;
}
if (buttonStatePlayerTwo != lastButtonStatePlayerTwo && isInputAllowed)
{
if (buttonStatePlayerTwo == 1)
{
if (currentPosition == playerTwo)
{
ToggleBallDirection();
IncreaseSpeed();
}
else
{
ScoreForPlayer(1);
}
}
lastButtonStatePlayerTwo = buttonStatePlayerTwo;
}
}
void ToggleBallDirection()
{
willTheBallGoTowardsPlayerTwo = !willTheBallGoTowardsPlayerTwo;
isInputAllowed = false; //Only one direction change per frame is allowed for consistent gameplay.
}
void IncreaseSpeed()
{
millisecondsPerLED -= deltaMillisecondsPerLED;
if (deltaMillisecondsPerLED > 50) //Because of this, it takes a little more time to reach to an insane speed. Adjust or remove this if rounds become too long.
{
deltaMillisecondsPerLED -= 50;
}
}
void MoveBallToNextPosition() //Moves the ball one spot.
{
previousPosition = currentPosition;
digitalWrite(previousPosition, 0);
currentPosition = currentPosition + deltaPosition;
digitalWrite(currentPosition, 1);
tone(1, 500, 50);
isInputAllowed = true;
}
void DetermineNextPosition()
{
if (willTheBallGoTowardsPlayerTwo)
{
deltaPosition = -1;
}
else
{
deltaPosition = 1;
}
}
void CheckGoalConditions()
{
if (currentPosition == goalPlayerTwo)
{
ScoreForPlayer(1);
}
else if (currentPosition == goalPlayerOne)
{
ScoreForPlayer(2);
}
}
void ScoreForPlayer(int playerWhoScored)
{
isInputAllowed = false;
FlashAllLEDs(1, 0);
if (playerWhoScored == 1)
{
scoreOfPlayerOne++;
Reset(1);
}
else if (playerWhoScored == 2)
{
scoreOfPlayerTwo++;
Reset(2);
}
}
void CheckEndGame()
{
if (scoreOfPlayerOne == 10)
{
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Player One Win");
EndGameCeremonyFor(1);
}
if (scoreOfPlayerTwo == 10)
{
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Player Two Win");
EndGameCeremonyFor(2);
}
}
void Reset(int playerCurrentlyScored)
{
if (playerCurrentlyScored == 1)
{
digitalWrite(playerOne, 1);
currentPosition = playerOne;
willTheBallGoTowardsPlayerTwo = true;
tone(1, 200 ,150 );
}
else if (playerCurrentlyScored == 2)
{
digitalWrite(playerTwo, 1);
currentPosition = playerTwo;
willTheBallGoTowardsPlayerTwo = false;
tone(1, 300 ,150 );
}
delay(1000); //Are three seconds enough for players to process the score?
millisecondsPerLED = initialMillisecondsPerLED; //Sets speed to initial value at the beginning of each round.
deltaMillisecondsPerLED = initialDeltaMillisecondsPerLED;
}
void EndGameCeremonyFor(int winner)
{
FlashAllLEDs(50, winner);
TurnOffAllLEDsForPlayer(0);
scoreOfPlayerOne = 0;
scoreOfPlayerTwo = 0;
delay(1000);
lcd.clear();
lcd.setCursor(4, 0);
lcd.print("Starting");
lcd.setCursor(4,1);
lcd.print("New Game");
delay(2000);
}
void TurnOnAllLEDsForPlayer(int player)
{
if (player != 1) //When this method is called with (2), only these pins(player two's) will turn on
{
digitalWrite(4, 1);
digitalWrite(5, 1);
digitalWrite(6, 1);
digitalWrite(7, 1);
digitalWrite(8, 1);
tone(1, 1000, 35);
}
if (player != 2) //When this method is called with (1), only these pins(player one's) will turn on
{
digitalWrite(9, 1);
digitalWrite(10, 1);
digitalWrite(11, 1);
digitalWrite(12, 1);
digitalWrite(13, 1);
tone(1, 1000, 35);
}
}
void TurnOffAllLEDsForPlayer(int player)
{
if (player != 1) //When this method is called with (2), only these pins(player two's) will turn off
{
digitalWrite(4, 0);
digitalWrite(5, 0);
digitalWrite(6, 0);
digitalWrite(7, 0);
digitalWrite(8, 0);
}
if (player != 2) //When this method is called with (1), only these pins(player one's) will turn off
{
digitalWrite(9, 0);
digitalWrite(10, 0);
digitalWrite(11, 0);
digitalWrite(12, 0);
digitalWrite(13, 0);
}
}
void FlashAllLEDs(int blinkCount, int player) //Second parameter(int player) is for when you want to flash only one player's LEDs. Use 1 for player one, use 2 for player two.
{
for (int i = 0; i < blinkCount; i++)
{
TurnOnAllLEDsForPlayer(player);
delay(35);
TurnOffAllLEDsForPlayer(player);
delay(35);
}
}
DIY addictive Arduino 1D Pong game
- Comments(0)
- Likes(1)
-
(DIY) C64iSTANBUL
Jul 15,2024
- 0 USER VOTES
- YOUR VOTE 0.00 0.00
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
More by Mirko Pavleski
-
Arduino 3D Printed self Balancing Cube
Self-balancing devices are electronic devices that use sensors and motors to keep themselves balanc...
-
Build simple Retro Style VFO (Variable frequency oscillator) with Crowoanel 1.28 inch Round Display
Today I received a shipment with a Small round LCD display from Elecrow. The device is packed in tw...
-
Human vs Robot – Rock Paper Scissors with MyCobot 280 M5Stack
Today I received a package containing the few Elephant Robotics products. The shipment is well pack...
-
How to Build a Simple Audio Spectrum Analyzer with Adjustable Settings
An audio spectrum analyzer is an electronic device or software tool that measures and visually disp...
-
How to Make a Digital Clock on a Vintage B&W TV using Arduino
These days I accidentally came across this small retro Black and White TV with a built-in Radio, so ...
-
Build a $10 Function Generator with Frequency Meter for Your Lab
A function generator is a piece of electronic test equipment used to generate various types of elec...
-
From Unboxing to Coding - Radar Clock on Elecrow’s 2.1 HMI Display
Today I received a shipment with a large round LCD display from Elecrow. The device is packed in two...
-
Making a Retro Analog NTP Clock with Unihiker K10 - Arduino IDE Tutorial
Some time ago I presented you a way to use standard Arduino libraries on the Unihiker k10 developme...
-
Build a Cheap & Easy HF Preselector - Antenna Tuner
HF antenna preselector is an electronic device connected between an HF radio antenna, and a radio r...
-
DIY Static Charge Monitor - Electrostatic Field Detector (Arduino & TL071)
A Static Charge Monitor also known as a Static Field Meter or Electrostatic Voltmeter is a device u...
-
XHDATA D-219 Radio Short Review with complete disassembly
Some time ago I received an offer from XHDATA to be one of the first test users of their new radio m...
-
How to make Simplest ever Oscilloscope Clock
An oscilloscope clock is a unique and creative way to display the time using an oscilloscope, which...
-
DIY Digital Barograph with BME280 and ESP32 - 24 Hour Pressure Trends
A barograph is a self-recording barometer that continuously measures and records atmospheric pressu...
-
Build a Raspberry Pi Pico SDR Radio with Waterfall Display
Software-defined radio (SDR) is a radio communication system where components that have traditional...
-
DIY Magnet Polarity Detector - How to Identify Poles with a Hall Sensor from a PC Fan
Recently, while working on a project, I needed to determine the polarity of several permanent magne...
-
Light Meter Project - Making Dfrobot Unihiker K10 Work with Standard Arduino Libraries
The other day I received a shipment with a UNIHIKER K10 development board from DFRobot, which I rec...
-
DIY Simple Arduino Whack-a-Mole Game
A "Whack-a-Mole" game is a classic arcade-style game where moles pop up randomly from holes, and th...
-
Wireless Power Transmission, Long-Distance and High-Efficiency with Class-E Tesla Coil
Wireless energy transfer also known as wireless power transmission is a method of getting useful el...
-
-
AEL-2011 Power Supply Module
322 0 1 -
AEL-2011 50W Power Amplifier
297 0 1 -
-
-
Custom Mechanical Keyboard
565 0 0 -
Tester for Touch Screen Digitizer without using microcontroller
230 2 2 -
Audio reactive glow LED wristband/bracelet with NFC / RFID-Tags
238 0 1 -
-
-







